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A nonlinear non-stationary problem of the development of two-dimensional con- 
vective motions in a plane horizontal fluid layer bounded by free surfaces and heated 
from below is studied. Horizontal dependences of the velocity and temperature are 
not assumed to be periodic or almost periodic; they have continuous wavenumber 
spectra and are represented by Fourier integrals. Vertical dependence of each 
variable is represented by several Fourier harmonics. Spectrum evolution is studied 
by means of the numerical integration of an initial-value problem. Initial disturbances 
of two qualitatively different classes are considered ; viz those localized in horizontal 
extent within a narrow part of the layer as well as having the form of a roll set 
throughout a rather wide region. In  both cases convective flows tend to evolve 
towards the arrays of well-established rolls with the same horizontal wavenumber 
up, which apparently seems to be the physically optimal (preferred) one for 
two-dimensional convection at given Rayleigh number R and Prandtl number P. We 
see no indications that the deviation of the initial roll-disturbance wavenumber from 
up must exceed some threshold value for giving rise to the flow readjustment in 
wavenumber. At sufficiently small P a decrease in up with increasing R is observed 
which agrees with experiments. A comparison is made of various theoretical models 
and various experimental circumstances, whence it is seen that the less stable the 
flow (i.e. the easier i t  can readjust), the better the preferred wavenumber manifests 
itself. I n  particular, roll flows periodic in a horizontal direction all over the infinite 
layer are highly stable, and when only such flows are considered, as has most often 
been the case, the preferred wavenumber is not revealed. 

1. Introduction 
Numerous experiments show that thermal convection of a constant-viscosity fluid 

in a plane horizontal layer heated from below, without thermocapillary effect, a t  not 
very small Prandtl numbers P and within a rather wide range of Rayleigh numbers 
R exceeding the critical one, R,, settles down to a steady, nearly two-dimensional 
roll flow (seee.g. Krishnamurti 1970; Willis, Deardorff & Somerville 1972 ; Kutateladze, 
Kirdyashkin & Berdnikov 1974). The distribution of rolls in their horizontal widths 
(or in corresponding horizontal wavenumbers a )  is peaked at a certain value 
depending not only on R and P but also on the prehistory of the flow, or, in other 
words, on the initial conditions (Krishnamurti 1970; Willis et al. 1972). 

I n  particular, the experiments with controlled initial conditions of a special form, 
viz an artificially created two-dimensional roll flow with a given wavenumber a, 
(Busse & Whitehead 1971 ; Busse & Clever 1979), show that, when a supercritical R 
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does not exceed a certain value (depending on P ) ,  there exists a finite band of a, values 
a t  which the rolls are stable. When a, is outside this band, secondary disturbances 
grow, resulting in the flow readjusting to a new, ‘more preferred’, characteristic scale. 
The location of the stability region in the (a ,  R)-plane is described theoretically, rather 
satisfactorily, in terms of the analysis of the stability of a finite-amplitude two- 
dimensional roll flow periodic in a horizontal direction against infinitesimal three- 
dimensional disturbances (Busse 1967; Clever & Busse 1978; Busse & Clever 1979). 

At the same time, in the experiments started from the usual uncontrolled, ran- 
dom ‘noise’) initial conditions, a much more narrow selection of physically optimal 
(preferred) wavenumbers is observed. Average values of measured wavenumbers are 
distributed within the stability region according to their proper laws and fill only its 
minor part (for comparison of experiments with the theory see figure 9 of Krishnamurti 
(1970), figure 5 of Berdnikov & Kirdyashkin (1979), and also figure 1 of Clever & Busse 
(1978) where the data by Willis et al. (1972) are used). Thus a t  given R and P various 
wavenumbers within the stability band seem not to  be physically equivalent for 
convective flows in general, but equivalent only with respect to a special class of initial 
conditions : quite regular, periodic in a horizontal direction, two-dimensional rolls 
experimentally realizable only when induced artificially. 

The experiments with random initial conditions exhibit a decrease in the preferred 
wavenumber with increasing R (see e.g. Koschmieder 1969: Krishnamurti 1970; 
Willis et al. 1972; Berdnikov & Kirdyashkin 1979) most pronounced a t  small P. As 
we saw, the theory of the stability of spatially periodic roll flows does not reveal 
such an effect. Still less definitely the question of the preferred wavenumbers is 
answered by numerical experiments simulating two-dimensional convection in a 
segment of a horizontal layer a t  cyclic lateral boundary conditions (Ogura 1971 : Vasin 
& Vlasyuk 1974). I n  these calculations the stability band of wavenumbers is found 
to be very wide, almost coinciding with the region of the linear instability of 
undisturbed (motionless) fluid. 

We shall see that the theoretical treatment is able to display the character of the 
preferred wavenumber variation with R and P and remove the seeming contradiction 
between the experiments with random initial conditions and the results of the 
stability analysis of two-dimensional rolls provided that primordial forcing of the 
considered flows to a spatial periodicity given from outside is rejected and the choice 
of the physically optimal regime is left to the system itself. 

Unlike most previous studies, the horizontal dependences of calculated velocity and 
temperature are considered here to have continuous wavenumber spectra (including 
zero as their long-wave bound) and represented by Fourier integrals rather than 
series.? This enables one to describe flows spatially aperiodic and smoothly readjusting 
in the course of evolution. It turns out that  sufficient freedom offered to the flow seem 
to be important for the physically optimal wavenumber to be manifested. 

2. Governing equations and solution procedure 
We consider an infinite, plane horizontal layer 0 < z < d of an incompressible fluid 

with thermal expansion (the z-axis of a Cartesian coordinate system (x, y ,  z )  is directed 

t Although the numerical analysis requires the introduction of a discrete wavenumber grid, the 
grid values are only computational parameters. when the initial conditions are fixed, then, provided 
the grid increment is sufficiently small, the  results do not depend on its value, hence on the positions 
of grid points. And as Fourier series are used (as e.g. in Foster 1969; Gertsenshtein ~t al. 1981), 
by varying the wavenumbers of basic harmonics we vary automatically the initial conditions, these 
wavenumbers thus being in fact physical parameters. 
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vertically downwards). The hydrodynamic equations for finite disturbances of 
variables in the Boussinesq approximation are 

- = v x ( v x v ) - v  -+ -  - g a T + v V 2 v ,  
av 
at t: 3 

v . v  = 0. (3) 

Here v = {vx, vy, v,} is the velocity vector, T is the temperature, p is the pressure, p 
is the density, g = (0,0,g) is the acceleration due to gravity, v is the kinematic 
viscosity, x is the thermal diffusivity, a = - ( l / p )  dpjdT is the coefficient of volume 
thermal expansion, p = dTo/dz is the unperturbed temperature gradient. The 
subscript 0 indicates unperturbed values of variables and the primes indicate 
perturbations (the primes by v are omitted since we assume U, = 0). Supposing both 
the layer boundaries to be undeformable, free (so that tangential stresses vanish a t  
them), and isothermal, we write the boundary conditions a t  z = 0, d as follows: 

av 
v, = 0, - = Y = 0, 

az aZ T = 0. (4) 

We consider two-dimensional flows, putting vy = 0, a/ay = 0. Introducing non- 
dimensional coordinates 6 = x/d, 5 = z/d and using (3), we define the stream function 
@ by the equations 

Now we write down the Fourier representation of the variables as 

+m a, 

fi = - x I/a,nei(@'+a6)da, 
d,=-, -a, 

T' = pd rm Fa, ei(nn<+a6) da 
n=-m -m 

(7) 

(n  runs through all integer values; hereinafter we shall omit commas in the subscripts 
on V and T whenever this cannot provoke misunderstanding). Here Van and Tan are 
dimensionless and v /d  and pd are the units of velocity and temperature respectively. 
Since $ and T are real and must satisfy the conditions (4), we require 

(the asterisk denotes complex conjugation). Thus @ and the original variables of the 
problem are expressed in terms of the spectral functions Van and Tan as follows: 

m v m  
@ = 2 x @,sinn@, T = pd Thsinnx& (9) 

n = 1  n = l  

v m  v dfin . 
vx = - - nn@, cosn@, v, = - ---sinnx5, 

dn=1 d n = ,  dE 
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where 
00 

~n = -4s (Re Vansinac+Im Vancosac)da, 
0 

roo 
T’ n = - 4 J (Re Tan sin at + I m  Tan cos at;) da. 

0 

Taking the curl of ( 1 )  and passing from this equation and (2) to their Fourier 
transforms, we obtain the following set of equations for Van, Tan :t 

K,, d - Van = - K $ ~  Van + ia- Tan + 5 srI (an’-a’n)mafn, Va-a,,n-n, Vaaln,da’ 
(13) d7 P nf=---8 

(an’-a’n)n Va-a,,n-n,Talnlda’. (14) 

Here R = apgd4/vx is the Rayleigh number, P = v / x  is the Prandtl number, 
7 = ( v / d 4 ) t  is non-dimensional time, and K,, = u2+n2n2. 

We regard the spectrum of the flow to be bounded in a and n, putting Van = 0, 
Tan = 0 when I a I > A or I n I > N ( A ,  N are the constants assumed to be spectrum 
bounds). Then the system (13), (14) can be solved numerically, initial conditions being 
given. To do this we write out separately real and imaginary parts of (13) and (14) 
and divide the considered range of values of la1 into 2M segments of length 
h = A/2M. Replacing the integrals over a’ by sums according to  the Simpson formula 
we obtain a set of 4(2M+ 1)  nonlinear ordinary differential equations of first order 
with respect to the independent variable 7 for the values of the functions Re Van, 
Im Van, Re Tan, Im Tan a t  the points a = mh (m = 0,1,  . . ., 2M, n = 1,2,  . . ., N ) .  The 
length of the interval of the integration with respect to a’ is equal to 
2A-a = (4M-m) h ;  when m is odd, we use the ‘half’ Simpson formula a t  the 
beginning of the interval (for the first segment of length h).  

We shall integrate the obtained system of equations over time by the fourth-order 
Runge-Kutta method with a constant step h,. For studying the flow evolution we 
shall use, as well as the spectral representation of the solution, also its coordinate 
representation obtained by inverse Fourier transformation according to (1 l ) ,  (12) 
carried out by the Filon method (see e.g. Hamming 1962). 

I n  each particular case the success of the calculations depends on the happiness 
of the choice of the computational parameters A ,  N ,  h, h,. The possibility of obtaining 
accurate results is, in principle, always attached to  some finite timespan 0 < 7 < 7max, 

at given physical parameters R and P and initial conditions, rmax being dependent 
on the computational parameters. The point is that in the course of the evolution 
the real and imaginary parts of spectral functions become of alternating sign in a, 
the intervals between zeros of each function decreasing. When these intervals become 
comparable to h, the accuracy of the approximation of the integrals in (13), (14) by 
Simpsonian sums begins to  drop sharply. In  other words, sufficiently narrow spectral 
peaks cannot be drawn on a fixed wavenumber grid. As a result, sawlike irregularities 
appear in the spectrum owing to the right-hand sides of (13) and (14) being calculated 
by somewhat different formulae for odd and even points a = mh. Because these 
formulae have the same order of errors, one may expect the height of ‘sawteeth ’ to 

t When the velocity field is represented in the form (6) chosen here, the expansion of vz drops 
out the component with a = 0, n = 0 which corresponds to the motion of the layer as a whole in 
the 2-direction. It is readily shown that i t  does not change with time and may be eliminated right 
from the start by choosing an appropriate frame of reference. 

1 
d7 P +mmS+b: -- d Ta n - -iaVa,-Kan-Tan+ X 
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be of the same order as the errors in the calculated values of the function. To be sure 
of the results we shall not use the solutions at  such values of 7 ,  as these solutions 
already bear marked signs of spectrum indentation (with the only exception (see figure 
7) when the sawlike irregularities appear rather early but grow slowly). A great many 
of the regimes considered have been calculated with various h, and it is seen that until 
the saw appears in the run with the lesser h this run differs little in results from 
the one with the greater h. 

Another factor affecting the 7msx value may be the growth of the error caused by 
cutting off higher (in n) harmonics. A run, for checking its 'suitability from this 
viewpoint, is to be compared with an analogous one differing in N by 1.  If N is 
sufficiently large then for some time the spectrum evolution proceeds in both the runs 
in closely similar ways. In some regimes (see $3) spectral curves of two analogous 
runs ultimately approach one other, and 7,,, is determined by the h-value. In other 
regimes the discrepancy between two curves all the time increases monotonically, and 
after its reaching an appreciable magnitude remarkable changes happen in the run 
with the lesser N :  the oscillations of spectral functions become irregular, the growth 
of the main spectrum peak decelerates, in some cases an a-shift of this peak reverses, 
etc. This very moment sets a limit to 7,a,. In  the run with the greater N such 
disturbances occur appreciably later. 

Most of the evolution regimes discussed in this paper have been studied with 
various values of N .  In  few cases (at some particular initial conditions) when N 
was not varied, the choice of the value of N was based on the results of calculations 
for the same R and P but other initial conditions, 7,,, being determined on the basis 
of the appearance of the spectrum, by using the signs of the accuracy losses described 
above. In  such cases only general evolution trends revealed with certainty at  the 
initial stage were used for further consideration. 

In  each case the short-wave bound a = A of the spectrum is chosen to be beyond 
the linear-instability band, in such a way that near this bounding point absolute 
values of the spectral functions always remain small. Then further widening of the 
spectrum range used does not affect the results practically. 

The time steps h, are to be chosen as small as necessary for the computations to 
be stable. When this is achieved, it is seen from checking computations with the 
half-steps that the accuracy of the integration proves to be very high. 

Information on the runs discussed below is summarized in tables 1 and 2. Each 
of these runs is recognized to be accurate enough until its own 7max. Some calculations 
are illustrated by the spectrum diagrams for the lower harmonics (n  = 1,2) , t  families 
of streamlines (plotted as the contours of the stream function) and families of the 
temperature contours. When the spectral functions contain both real and imaginary 
parts, for easier visualization of the results we plot on the spectrum diagram merely 
the modulus of this function versus the wavenumber. In  the spectrum diagrams the 
solutions of the nonlinear problem are presented along with that of the linearized 
one with the same initial conditions. 

3. Convection regimes with the initial conditions of class I 
We impose the initial conditions of class I in such a way that within a rather wide 

spectrum band overspanning the region of linear instability initial (in general, not 

t Hereinafter, keeping (8) in mind, we shall deal with only non-negative values of a and positive 
values of n. 
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small) disturbances of the harmonic n = 1 are present. Specifically, we assume that 
a t r = O  

Re V,, = I Kv 
K V ( ‘ 3 - a ) / ( a 3 - a 2 )  ( a 2  < a < u 3 ) >  

I 0  (a3 < a Q A ) ,  

(0 Q a Q az), 

Im Val = &@3-a)/(a3--aJ (a2 < a < ad, 
(a3 Q a Q A ) ,  

(16) 

117) 

1 
fn > 11, 

r 
van = 0 

and similarly for T,, (with K, substituted for Kv); he-re K v ,  K,, a,, a2,  a3 are 
constants. I n  spectrum diagrams such initial disturbances are represented by 
trapezia. I n  physical space they are localized in f ;  within a rather narrow domain of 
the layer; their spatial distributions constructed according to (9), (1  l ) ,  (12) are shown 
in figures 2 ( a ) ,  5 ( a ) ,  8 (a ) .  The values of all the physical and computational parameters 
for this series of calculations are listed in table 1. 

We begin analysing the results with a slightly supercritical case. I n  run 1 
R = 660 = 1.004RC (under the boundary conditions chosen R, = 657.5). The calcu- 
lated spectrum evolution is shown in figure 1 ,  where I V,, I is presented (IT,, I has a 
similar form : since 7 z 0.1,l T,, I z 0.15 I V,, I). The values of I V,, I and I Tun I with n > 1 
all the time remain very small. 

After a transient process with rapid changes in the spectrum only a narrow peak 
of the spectral function of the first harmonic (n = 1 )  survives. Subsequently this peak 
narrows and, since 7 z 4, grows showing an apparent tendency towards resembling the 
&-function. This run was terminated at 7 = 12.0 in order to save computer time. 

The spatial distributions of the disturbances a t  7 = 0 and 7 = 12.0 are shown 
in figure 2. It is seen from such distributions for various time instants (not presented 
here) that convective roll motions, having primarily arisen in the region of most 
vigorous initial disturbances (near f ;  = 0 ) ,  then propagate further and further over 
the layer in both <-axis directions, involving a wider and wider region. The 
disturbances in the older rolls tend to steady values. By the end of the run they change 
almost not a t  all. 

Also the values of the roll width A settle, this quantity being defined as the distance 
between two successive zeros of the function @ on the line 5 = + in the (6 ,  <)-plane. 
It is seen as an apparent tendency for the flow to evolve towards a regular periodicity 
in f ; ;  thus in the limit of T+CO all the rolls would have the same A-value. We shall 
characterize this final state by the ‘calculated preferred wavenumber’ up = n/A (for 
the present, we define ap for each particular run and put over the discussion of the 
question as to how general is the significance of such an ap  to $5). 

At 7 = 12.0 all the well-established rolls have very similar values of A yielding 
ap = 2.224f0.001 extremely close to the critical wavenumber a, = 2.221 (so high 
precision of the evaluation of up is due to the structure of the solution obtained but 
is not the precision of the method itself). 

In  the linearized problem, at the same moments, the amplitudes of the disturbances 
being greater, the motions involve a region of considerably less horizontal extent. 
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0.25 

0.20 

0.15 

I Val1 

0.10 

0.05 

0 1 2 3 4 5  

FIGURE 1. Spectral function I Val[ obtained in run 1 (R = 660, P = 1):  -, solution of nonlinear 
problem; ----, solution of linearized problem with the same initial conditions; bounds 
of linear-instability region. Curves are labelled by 7-values. 

U 

Now we turn to moderately supercritical regimes. 
Runs 2-7 correspond to the case of R = lo3 = 1.5RC and to three different Prandtl 

numbers. 
I n  figure 3 the functions lVull and IT,,l obtained in run 2 (P = 0.1) are shown. The 

function 1TaJ is very similar in its form to I VUJ. At 7 = 7max = 1 .O the value of lTull 
in its main peak is equal to 0.19. The formation of a sharp peak of I V,,l is observed 
whose position on the wavenumber axis exhibits a clear tendency to steadying with 
time. On both sides of i t  there form collateral maxima shifting towards the main one. 
The function I T,, I shows a sharp peak a t  a = 0 that reflects the development of 
thermal boundary layers. The values of I VUJ, I V,,l and IT,,[ remain small all the 
time. 

In  general, if we pass successively to  higher values of N in the calculations then 
the top point of the curve representing I Val[ or ITal[ for some moment jumps in the 
plane of the spectral diagram in an oscillatory manner by progressively smaller 
distances, tending to its limiting position. I n  figure 3 the positions of such a point 
for lVaJ are marked as obtained in runs 2 ( N  = 3) and 3 ( N  = 4). At 7 = 1.0 they 
correspond respectively to a = 1.7 and 1.6; in the limit of N+oo the maximum of 
I Vul 1 is obviously confined between these two a-values. 

The spectrum evolution at P = 1 and 10 with the same initial conditions (runs 5 
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-5 -4 -3 -2 -1  0 1 2 3  4 5  6 
E 

r = 12.0 

FIQURE 2. Spatial distribution of velocity and temperature in run 1 (R = 660, P = 1 ) .  Increment 
of contour levels of T: 0.1. (a) Initial disturbances (of class I ) ;  increment of @: 0.1. (b) Solution 
for 7 = 12.0; increment of @: 0.03. 

and 6 respectively) has the same qualitative features. The case of P = 10 is illustrated 
by figure 4. For these regimes good results can be obtained in calculations with N = 3 : 
there is practically no discrepancy in the spectra between the runs with N = 3 
and 4. 

On comparing regimes with three different P-values, i t  is seen that a t  P = 0 . 1  the 
final position of the main maximum of the spectral function of the first harmonic is 
appreciably shifted to  the left from the critical wavenumber a, of the linear theory, 
while a t  P = 1 and 10 i t  corresponds approximately to a,. 

The spatial distributions of the velocity and temperature obtained in runs 3 and 
6 for the moments 7 = 7,itx are shown in figures 5 ( b )  and ( c )  respectively. Less 
developed rolls being nearer to the sides of the convecting region are somewhat 
narrower than mature rolls in the vicinity of = 0. As the flow evolves, the widths 
of new rolls increase, the sizes of the middle rolls having already become nearly 
constant by time 7 = 7,,,. The roll widths tend to their final value from below. 
Therefore the width A * of the widest roll is closest to this final value, and, as the degree 
of flow settling in most wide rolls implies, differs little from it. Hence the quantity 
n / A  *maybereckonedasanapproximatevalueofthe calculated preferredwavenumber 
ap.  It is these quantities that  are listed in table 1 as ap  for the regimes R = lo3. Also 
they correspond to  the maxima of the spectral functions of the first harmonic. 

We see that the calculated preferred wavenumber ap  is within the range 1.6-1.7 
in the case of P = 0.1, and is close to the critical wavenumber a, = 2.22 in the cases of 
P = 1 and 10  (very slight exceeding a, a t  P = 1) .  

In  runs 2, 3 ,  5,6 the same initial velocities were given (as expressed in terms of the 
chosen dimensionless variables). This initial disturbance, as compared with the 
velocities in well established rolls, proved to be small when P = 0.1, appreciable when 
P = 1 and vigorous when P = 10.  The initial temperature disturbance is of the same 
order as the steady-state amplitude values in all three cases. In order to form a view 
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FIGURE 3. Spectral functions I V,,l and lTu21 obtained in run 2 ( R  = lo3, P = 0.1, N = 3):  0, top 
points of spectrum curve of I Val[ a t  7 = 0.7 and 1.0; 0 ,  the same for run 3 ( N  = 4). Other notation 
as in figure 1 .  

FIGURE 4. Spectral functions lVull and lTazl obtained in run 6 ( R  = lo3, P = 10). Notation as in 
figure 1. 

of an effect of the initial velocity magnitude on the process development, runs 4 and 
7 were performed, which differed from runs 2 and 6 only in K ,  values. In  these 
additional runs the initial characteristic velocities were comparable to the steady-state 
ones. It turned out that  in spite of the initial velocity being changed by a factor of 
10 the process arrived at the values of the spectral functions practically the same 
as earlier and a t  the same course of temporal evolution. Differences in the spectral- 
function values between runs 2 and 4 became insignificant a t  r % 0.6 and between runs 
6 a n d 7 a t r z l .  

Now we pass on to the regimes R = 3 x lo3 = 4.5RC (runs 8-12). For general 
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FIGURE 5.  Spatial distributions of velocity and temperature in runs 3 and 6 ( R  = lo3). Increment 
of T :  0.1. (a )  Initial disturbances of class I general for runs with R = lo3. Increment of + in runs 
3 and 6 :  0.2. (bj Solution obtained in run 3 ( P  = 0.1) for 7 = 7,,, = 1.0; increment of $: 5.0. (cj 
Solution obtained in run 6 ( P  = 10) for 7 = 7max = 6.0; increment of +: 0.05. 

qualitative features the spectra evolve in the same way as when R = lo3, but much 
more rapidly. Figures 6 and 7 show the diagrams of I V,,l as obtained in runs 9 and 
12 ( N  = 5 )  respectively, for P = 0.1 and 10. Also the positions of the points of the 
spectral curves are marked for runs 8 and 11 ( N  = 4). It is interesting that the results 
obtained a t  N = 4 and 5 converge with time. This means that a t  the initial stage of 
the evolution higher harmonics are excited which subsequently damp and do not 
affect appreciably the establishment of the roll flow. 

By the time 7,,, the most developed rolls do not attain such a degree of their 
settling as in the runs carried out for R = lo3, especially when P = 1 and 10. It is 
seen from figures 8 (b ,  c )  that  the dispersion in roll-width values is rather marked. As 
before, the greater the velocity in a roll the wider the roll. However, unlike the regimes 
at R = lo3 the widths of the oldest rolls (in the middle of the convecting region) now 
first exceed their final values-probably owing to the impetuous growth of the 
disturbances a t  the early stage while they are yet very localized.? Subsequently the 
roll widths equalize. At P = 0.1 the total width of four middle rolls and a t  P = 1 and 
10 that  of three ones practically do no longer vary by 7 = rmax, thus giving the 

t The author is grateful to one of the referees for pointing out such a possibility. 
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FIGURE 6. Spectral function I V,,l obtained in run 9 (R = 3 x lo3, f' = 0.1, N = 5 ) :  0, top points 
of spectrum curve a t  T = 0.1, 0.2, 0.2667; 0 ,  the same for run 8 ( N  = 4). Other notation as in 
figure 1 .  
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FIGURE 7 .  Spectral function lVull obtained in run 12 ( R  = 3 x lo3, P = 10, N = 5 ) :  0, top points 
of spectrum curve a t  7 = 0.4, 0.8, 1.0, 1.2;  0 ,  the same for run 11 (AT= 4). Other notation as in 
figure 1 .  
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( b )  Solution obtained in run 9 (P = 0.1) for 7 = 7,ax = 0.2667; increment of $: 15.0. (c) Solution 
obtained in run 12 ( P  = 10) for 7 = 7,,, = 1.2; increment of $: 0.15. 

possibility of judging the value of the calculated preferred wavenumber, although 
more roughly than a t  R = lo3. This wavenumber a p  (see table 1) is within the range 
1.1-1.3 at P = 0.1, and, as before, is close to a, a t  P = 1 and 10. 

Thus convection regimes started from the initial conditions of class I demonstrate 
a strong decrease in up with increasing R when P = 0.1 and do not reveal any somehow 
marked variation in a p  when P = 1 or 10. 

In  the regimes discussed, when R = const, the characteristic non-dimensional 
steady-state velocity U is approximately proportional to Pl. For the range 
lo3 < R 6 3 x lo3 a very crude estimate yields U a R, so that if p = const then the 
dimensional velocity behaves as u - l x 0 .  

4. Convection regimes with the initial conditions of class I1 

they were imposed as follows: a t  r = 0 
The initial conditions of class I1 are of a qualitatively different form. I n  most cases 

Van = 0 (n  2 l ) ,  (18) 
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S 
Tal = - -exp 4 a d  { - H} a2 (sin a, to + i cos a, to), 

Tan = 0 ( n >  1) (20) 
( S ,  a,, to, a are constants chosen appropriately). I n  some runs, besides, the function 
Val was assumed to be non-zero and given also in the Gaussian form Val = Tal. When 
ecailu2 < 1 the spectrum (19) represents according to (12) the temperature 
disturbance Ti z [a,([-[,)]. 

When n/aO is several times as small as 4 /a  or smaller this disturbance resembles that 
produced by an.array of convection rolls occupying a more or less wide (in the 
[-direction) part of the layer. The velocity field represented by the spectral function 
Val of the form (19) is none other than a roll flow of this kind. I n  our calculations 
(21) always held with high accuracy. The examples of the initial temperature 
disturbances of the form (21) are given in figures l l (a)  and 12(a). As v+0 the 
spectrum (19) assumes a line character : 

lim T’, = - iSS(a - a,) (sin a, 6, + i cos a, 6,) ; 122) 
u+o 

in physical space the disturbance becoming periodic in [: 

lim Ti = Scos [a,([-t,)]. 
u+o 

(23) 

i n  all the runs discussed here [, = 0, so that in the case of no initial velocity 
Im Van = Re Tan = 0 for any n and r.  The values of all the parameters are given in 
table 2. 

The typical patterns of the evolution of the spectrum of the first harmonic at 
‘roll’ initial conditions are shown in figures 9 and 10. Our attention is attracted 
by a pronounced drift of the main spectral peak towards smaller a when a, = 2.22 
(run 13, figure 9) and,towards greater a when a, = 1.4 (run 14, figure 10). I n  the latter 
case after r = 0.9 a very slow reverse drift is observed; then an almost full stop in 
a-drift ensues. 

The character of the solution convergence with increasing N ,  as described in $3,  
holds for the initial conditions of class 11. No greater N values than for class I are 
required, in some cases even smaller values being sufficient (cf. runs 17 and 18). 

i n  physical space the flow evolution appears as the readjustment of the convection 
rolls in their width, and, at the same time, the widening of the convecting region. 
This is illustrated by figures 11 and 12, obtained in runs 13 and 14. A slight reverse 
shift of the spectral peak observed in run 14 corresponds to the roll widths equalizing, 
the total width of the six rolls shown in figure 12 (c) remaining practically unchanged 
after r = 0.9. By time r = T , , ~  = 1.35 the flow in this region has mainly become 
steady, the roll width corresponding to  the wavenumber value 1.65. 

Also in run 25 the sizes of the central rolls have almost settled down to a steady 
value by time T = T ~ ~ ~ .  

i n  other runs of this series the timespans 7,ax were insufficient for such a settling, 
although the steps h = A / 2 M  were smaller than in the runs with ‘localized’ initial 
disturbances. It was impossible to evaluate the calculated preferred wavenumber up. 
However, the basic tendency of the flow evolution usually manifested itself in the 
drift of the main spectral peak. Therefore the positions a, of the main maximum of 
the function 1VaJ (obtained by means of square interpolation of this function) for 
7 = T,,, are presented in table 2 as the results of the calculations. 
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FIQURE 9. Spectral functions Val and iT,, obtained in run 13 ( R  = lo3, P = 0.1, a, = 2.22, N = 4): 
0,  top point of V,, curve a t  7 = 0.9; 0 ,  the same for analogous run with N = 5.  Vertical dashed 
straight line marks off position of initial wavenumber a,. Other notation as in figure 1. 

By comparing a, and a, values from table 2 with up values from table 1 one can 
easily observe that the main maximum of the spectral functions of the first harmonic 
lVaJ and ITal[ always moves from its initial position towards up. When the initially 
imposed disturbance of the form (19) has a, > up the peak drifts to the left, and when 
a, < up i t  drifts to  the right. I n  runs 14 and 25 the flow evolution looks like an  
asymptotic tendency of the wavenumber of convection towards the same value up 
that emerges when the flow is excited by the ‘localized’ initial disturbance of class 
I. Although in other cases 7,,, is not great enough to draw so definite a conclusion, 
it is highly probable that this tendency is general, because the shift of the spectral 
maximum, rapid or slow, follows the described rule in any event and there is no case 
contradicting it. (The case of R = lo3, P = 1,  a, = 2.22 is not to be regarded as an 
exception because the error in the computation of up and a, may be not small 
compared with h ;  moreover, a, is not exactly the same as the wavenumber 
determined by the roll width.) This impression is supported by the finding that there 
is no case when a, would stop changing towards up without reaching i t  (only 
deceleration corresponding to  the asymptotic tendency a, --f up is observed). 

Thus there are no indications that, the initial wavenumber being within some 
more or less wide range, the induced rolls keep this wavenumber unchanged. 

A comparison between runs 13 and 15 (a, = 2.22 > up) and also between runs 14 
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FIGURE 10. Spectral functions V,, and iT,, obtained in run 14 (R = los, P = 0.1, a, = 1.4, N = 4): 
0,  top point of V,, curve at 7 = 1.35; 0 ,  the same for analogous run with N = 3. Vertical dashed 
straight line marks off position of initial wavenumber a,. Other notation as in figure 1 .  

and 16 (a, = 1.4 < up) shows that the rate of flow readjustment depends on u, i.e. 
on the width of the region involved by the initial disturbance. In both cases, a t  v = 0.2 
the drift of the spectral peak proceeds much more slowly than at u = 0.4. 

Besides the runs described here in detail or at  least reflected in table 2, some 
individual tentative runs (for R = lo3, P = 0.1 and 1 )  were carried out in which the 
initial conditions were given as a superposition of several velocity and temperature 
disturbances of the form (19) for n = 1 and 2 with different a, and t,, and the same 
8. If so, the main spectral maximum developed at the point of the initial peak closest 
to up and also drifted towards up. 

5. Summary, discussion and conclusions 
The calculations carried out show that in the evolution of two-dimensional 

convection in an infinite horizontal layer an apparent tendency is seen towards the 
establishment, in the limit if T-+ 00, of the spatially periodic flow characterized by 
a certain wavenumber up. The results strongly suggest that, given R and P, the flows 
started from the initial conditions of both considered types tend to evolve towards 
one and the same up. The adjustment of the initially created rolls to the ‘preferred’ 
wavenumber up proceeds less rapidly, the wider the part of the layer occupied by these 
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FIGURE 1 1 .  Spatial distributions of velocity and temperature in run 13 (R = lo3, P = 0.1, 
a, = 2.22) .  Increment of $: 5.0; increment of T: 0.1. (a) Initial temperature disturbance; initial 
velocity = 0. (b) Solution for r = 0.3. (c) Solution for r = r,,, = 1.2. 

rolls. No effect of the amplitude of the initial disturbance on up and steady-state 
values of the velocity and temperature is observed. When P is sufficiently small, up 
decreases strongly with increasing R. 

Our calculations with ‘roll’ initial disturbances do not reveal at all a rather wide 
spectrum band as predicted by Busse (1967), Clever & Busse (1978), Busse & Clever 
(1979), Ogura (1971), Vasin & Vlasyuk (1974) (and also found in the experiments with 
controlledinitial conditions) - within that roll convective motions arestable. Although 
in these works P-values and/or boundary conditions differ from ours, we may, 
proceeding from the position of the stability regions in the ( a ,  R)-plane found there, 
expect that in many of our cases the points (a,,, R) would be within the stability region 
or the points (urn, R) would enter this region in the course of the drift (the region 
being especially extensive when the imposition of a disturbance does not break down 
the two-dimensional character of the flow). And, nevertheless, in all cases the rolls 
exhibit a tendency to  readjustment to up. We attempt to account for this discrepancy 
by juxtaposing various theoretical models and conditions of various experiments and 
arranging them in the order of diminishing ‘degree of st,ability’ of flows, i.e. their 
increasing ability for readjustment. Then the tendency to distinguishing a certain 
preferred wavenumber will manifest itself more and more clearly. 

The instabilities studied in the abovementioned works decrease the flow’s 
characteristic scale when it is ‘too large’ and increase it when it is ‘too small’. The 
tendency for a roll flow with an initial wavenumber a, to readjust to the preferred 
wavenumber up seems therefore to be universal. Readjusting (destabilizing) factors 
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FIGURE 12. Spatial distributions of velocity and temperature in run 14 (R = lo3, P = 0.1, a, = 
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1.4). 
Increment of T: 0.1. (a) Initial temperature disturbance; initial velocity = 0. (b )  Solution for 
7 = 0.15, increment of $: 2.5. (c) Solution for 7 = T,,, = 1.35, increment of 9: 5.0. 

acting more strongly for greater la,-apl may overcome the counteraction of 
stabilizing factors only a t  a finite value of la, - a,[. Then a finite-width wavenumber 
range of stable flows does exist including ap. I n  other words, the instability is of 
threshold character. 

The conditions of two-dimensional numerical models in which the flow is periodic 
throughout the whole infinite layer, the period being fixed by the lateral dimension 
of the calculation domain (Ogura 1971 ; Vasin & Vlasyuk 1974), ensure to such a 
flow very high stability. Such a flow cannot readjust smoothly in wavenumber 
because the rolls cannot, progressively expanding, 'move out of' the calculated 
domain or, contracting, 'move into' it. The width of every roll cannot be changed 
by the same amount other than by changing the number of the rolls in the domain, 
Hence the destruction or generation of some rolls, i.e. rather radical breaking of the 
existing flow, is necessary. The instability threshold proves to be high, the width of 
the wavenumber band of stable flows being very wide. I n  this case stability is also 
favoured by the fact that  the number of rolls in a given spatial period is always an 
even integer, hence variations in wavenumber may not be arbitrary, being quantized. 

The flows studied by Busse (1967), Clever & Busse (1978) and Busse & Clever (1979) 
retain their two-dimensional character after the imposition of a disturbance only if 
the latter is represented by the Eckhaus mode. In  this case the flow readjustment 
to  a new roll width all over the layer is still not realizable by means of smooth gradual 
expansion or contraction of the rolls, because this requires them to move by infinite 
distances, the generation or destruction of rolls seeming to be necessary. The 
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wavenumber band of stable flows is, as before, very wide.t But taking into 
consideration other modes that make the flow three-dimensional results in a 
considerable restriction of the stability band because possibilities arise for the flow’s 
characteristic scale to change without radical breaking of the flow (of course, within 
certain limits), the threshold character of the instability being nevertheless retained. 
Because these modes are more ‘dangerous’ than the Eckhaus mode, their growth is 
considered to be the basic mechanism for flow-scale changing (Lipps & Somerville 
1971; Busse & Whitehead 1971; Clever & Busse 1978; Busse & Clever 1979). 

In the experiments with controlled initial conditions (Busse & Whitehead 1971 ; 
Busse & Clever 1979) the sidewalls of the tank probably play nearly the same 
stabilizing role as the boundaries of the calculation domain in the above numerical 
models. On the other hand the development of three-dimensional disturbances is not 
forbidden. A good agreement of the experimental results with the calculations by 
Busse (1967) and Busse & Clever (1979) confirms that with respect to stability this 
case is similar to that studied theoretically in these two papers. (More precisely, as 
the theoretical results by Cross et al. (1980) suggest, rigid sidewalls stabilize the flow 
somewhat less than spatial periodicity does, because boundary layers near these 
walls can accommodate to the flows with various wavenumbers arising in the bulk 
of fluid in the container.) 

It is because of the presence of the wavenumber threshold for the roll instability 
that one can easily account for the experimentally observed hysteresis in the 
behaviour of the mean roll width as Rayleigh number is varied; the (uncontrolled) 
roll set established at some R fixing by itself the initial conditions for the process at  
somewhat different R (Krishnamurti 1970; Willis et al. 1972). 

When the regimes with various R-values are realized independently, each particular 
experiment being started from random non-ordered initial disturbances, the tendency 
for a certain preferred wavenumber to be distinguished is found to be more explicit. 
Probably, at  the initial stage the flow is weakly stable (i.e. highly changeable) owing 
to its disorder. The convection cells surviving among various competing ones tend 
to adjust to the optimal scale and optimal planform (under the simplest conditions, 
the roll planform). Later their stability increases, and finally in an intricated system 
of not-quite-regular rolls confined in a bounded region (let us recall the stabilizing 
role of lateral boundaries!) an equilibrium state sets in. It is characterized by the 
predominance of rolls of the preferred width - still there exists a considerable 
dispersion in the width values. 

The initial conditions of classes I1 and I considered here are certain approximations 
for two limiting cases: the case of a strictly periodic roll disturbance involving the 
whole infinite layer (the Q-function in the spectrum) and the case of a concentrated 
initial disturbance (the &-function in physical space). 

The first limiting case, as we saw, corresponds t o  the conditions of higher stability. 
But the transition in the spectrum from the &-function to the Gaussian function 
(initial conditions of class 11) leads to considerable changes in the stability properties 
of the flow. As the accuracy of our calculations permits us to judge, the removal of 
the requirement of spatial periodicity and passage to the consideration of roll flows 
originally involving a finite part of the infinite layer results in the instability losing 
its threshold character : the flow evolves to  a certain preferred wavenumber even if 
the initial wavenumber differs little from it. It should be noted that this is revealed 

t High stability of two-dimensional spatially periodic flows with respect to disturbances of the 
same form (even comparable in amplitude with the initial flow) is seen also from the calculations 
by Gertsenshtein et al. (1981). 
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within the framework of a two-dimensional model although two-dimensional processes 
are not usually considered to be of great significance for flow-scale changing. Spatial 
periodicity or the presence of sidewalls prove to be more restrictive (stabilizing) 
conditions for such a readjustment than two-dimensionality. This is confirmed also 
by the fact that, the wider the region occupied by rolls (the lower u in (19)), the less 
rapidly the readjustment proceeds, and the more the preferred wavenumber is 
masked; in the limit of u+O we are then led to a spatially periodic model with its 
proper wide stability range. Therefore the growth of new rolls and the widening of 
the convecting region can at a certain stage of the evolution make further readjustment 
very slow. 

In  contrast, one can obtain initial conditions similar to that of class I by taking 
u to be very large. At such localized initial disturbances convection rolls reach the 
same optimal width sooner. It seems that if there are few rolls at the initial stage 
they ‘hinder one another’ less in readjusting to the optimal size. 

Finally, in the limiting case of a concentrated initial disturbance one might expect 
the rolls to  be formed whose width would correspond to  the preferred wavenumber 
from the very beginning. 

All this provides good reasons to believe that for convection in a horizontal layer 
there exists a physically optimal wavenumber defined uniquely (at least for flows of 
the type of two-dimensional rolls) which is a function of the Rayleigh and Prandtl 
numbers. At the same time, for the flow arriving a t  the roll pattern exactly 
corresponding to the unique wavenumber, sufficient freedom must be offered to  the 
flow. 

It is of interest that  a t  P = 0.1 the calculated preferred wavenumber ap  decreases 
with increasing Rayleigh number and departs more and more from the value of a 
corresponding to the maximum growth rate of the linear theory, this value, in 
contrast, increasing with R. This resembles the behaviour of the preferred wavenumber 
of roll convection well known from experiments and most pronounced a t  small P .  
Other theoretical studies treated such a decrease in wavenumber as an effect of 
accessory factors such as the presence of sidewalls (Davis 1968; Cross et al. 1980) or 
the non-perfect nature of the heat conductivity of the slab bounding the layer top 
(Nield 1968; Nield’s suggestion contrasts with the observations by Koschmieder 
1969). The results presented here demonstrate the decrease in ap  with increasing R to 
be an intrinsic property of the convection mechanism in an infinite horizontal layer. 

Discovering this effect within the framework of a two-dimensional model seems 
to be surprising. Lipps & Somerville (197 1) have concluded from their numerical 
experiments that  only three-dimensional calculations show increases in the roll width 
with increasing Rayleigh number ; in two-dimensional calculations the opposite tend- 
ency is observed. On this basis they suggested that the convection tends to a steady 
two-dimensional regime through an essentially three-dimensional transient process 
affecting the final wavenumber. From the viewpoint of our results and the concept 
presented here of the stabilizing role of spatial periodicity one can give another 
interpretation of Lipps & Somerville’s observation. As we saw, the decrease in up is 
a purely nonlinear effect. If initial disturbances are weak, for some time their 
development obeys the linearized equations according to which the wavenumber of 
the most rapidly growing mode increases with R rather than decrease. But having 
reached a considerable amplitude the calculated flow will not be able to reduce its 
wavenumber if the computational model gives i t  high stability. This must be just 
the case in the two-dimensional version of Lipps & Somerville’s model. 

Busse & Clever (1979) also assign to a three-dimensional process (the skewed 
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varicose instability) the major role in the mean wavenumber decreasing with 
increasing R. When the non-threshold flow readjustment is possible, this process is 
not necessary. 

Nevertheless, the question of what wavenumbers would be preferred for three- 
dimensional disturbances evolving under similar conditions remains open as yet, 
as does the question about the factors affecting the selection of a preferred planform. 
Further studies are needed for these questions to be settled. 

The author is grateful to V. I. Yudovich, V. D. Zimin, and all three referees for 
valuable remarks, to L. M. Alekseeva for helpful discussions, and to A. T. Fedor- 
chenko, who shared his experience in using plotter subroutines. 
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